

# 「光る花」の開発と利用



## SATテクノロジー・ショーケース2014

### ■ はじめに

可視化マーカーとして遺伝子機能解析に広く用いられ ているGFP等の蛍光タンパク質は、由来する生物種の違 いや変異導入等による構造の改変により様々な色調や蛍 光特性のものが開発されているが、花弁での蛍光が肉眼 で簡易に観察できるほどの蛍光強度を持つ組換え植物は 未だ報告されていない。我々は、植物での観察に適した 蛍光強度と波長特性を持つ新規蛍光タンパク質を、翻訳 効率の改良によりタンパク質を高効率で蓄積させる新規 ベクターで発現させることで、花弁においても明瞭な蛍光 を発する「光る花」の作出に成功した。

#### ■ 活動内容

1. 蛍光タンパク質を高蓄積するトレニアの作出 海洋カイアシ類キリディウス属の一種である Chiridius poppeiから単離した新規蛍光タンパク質 CpYGFP (Yellowish-Green Fluorescent Protein)は、励起極大509nm で蛍光極大517nmの黄緑色の蛍光を呈し、一般的なオワ ンクラゲ(Aequorea victoria)のAvGFPと比較して幅広いpH で強く安定な蛍光特性を示す。このタンパク質を植物細胞 内に高度に蓄積させるため、シロイヌナズナ(Arabidopsis thaliana)由来の新型HSPターミネーターおよび新型ADH 翻訳エンハンサーを付加し、発現カセットを3重連結した 改良型の高翻訳効率ベクターに組み込んだ。このベクタ ーをアグロバクテリウム法によりトレニア(Torenia fournieri) 白花系統に導入した。

## 2. 光る花の特性

改良型CpYGFP発現ベクターを導入したトレニアでは、 遺伝子の高発現とタンパク質高蓄積の両レベルにおいて 優れた系統が多数得られ、植物体全体、特に花器官にお いて非常に強い蛍光が観察された。花弁、雄ずい、雌ず いなど薄層の、あるいは微細な器官においても、一般的 な青色LED光源(470nm前後)と観察用フィルター(透明オ レンジのアクリル板)との組合せで肉眼でも明瞭な観察が 可能である。閉鎖系温室の自然光に近い強光下で栽培さ れた植物においても強い蛍光を長時間安定に発するほか、 乾燥や樹脂封入などの処理を経ても明確な蛍光が維持さ れたことから、これらの植物ではCpYGFPを非常に効率良 く安定に発現・蓄積できることに加え、タンパク質自体の活 性も極めて安定であることが推定された。

## 3. 光る花の利用に向けて

今後は、この蛍光タンパク質発現ベクターと花器官形成 関連遺伝子等を組み合わせることで、これまでは難しかっ た遺伝子発現変化の組織レベルでの簡便なリアルタイム 観察を可能とする技術開発を進める一方、蛍光を最大限 に引き出す栽培方法や観察・処理方法の検討を進めるこ とで、「光る花」のインテリアや組換え教材としての利用を 加速させる予定である。

## ■ 関連情報等(特許、プレス発表)

- 1. WO2005/095599「新規な蛍光性タンパク質とそれを コードする遺伝子」(NECソフト)
- 2. WO2011/021666「環境ストレス下の翻訳抑制 を回避 する5'UTRをコード する組換えDNA分子」(奈良先 端大)
- 3. プレス発表「光る花の研究開発に成功」(NECソフト、農 研機構、インプランタイノベーションズ、奈良先端大) http://www.necsoft.com/press/2013/130905.html



図 新規蛍光タンパク質遺伝子を導入した光るトレニア

代表発表者 大坪 憲弘(おおつぼ のりひろ) (独)農研機構 花き研究所 花き研究領域

〒305-8519 茨城県つくば市藤本 2-1 問合せ先

TEL:029-838-6801 FAX:029-838-6841 www-flower@naro.affrc.go,jp

■キーワード: (1)光る植物

(2)新規蛍光タンパク質 CpYGFP (3)改良型高翻訳効率ベクター