

裸眼立体視に対応した Hepatic Cockpit

医療·福祉·介護

SATテクノロジー・ショーケース2018

■ はじめに

今日、医学生や研修医は電子教科書における動画など、 これまでの紙媒体以外の方法で手術の手法を学ぶことが できるようになった。さらに、マウス等を使って実際に臓器 のCGを切離するなど、より体感的な手術手技学習方法も 確立されつつある。本プロジェクトでは、医学教育におけ る学習の効率、及び理解度の向上を図るために、自分の 手で超音波メスを動かしながらインタラクティブにかつ直 感的な操作で肝臓の手術手技を学ぶことができる手術シ ミュレータ"Hepatic Cockpit"の開発を進めてきた。しかし ながら、これまでのシステムでは、通常のディスプレイの画 面で肝臓の映像提示をしていたため奥行き情報が欠落し ていた。そこで、裸眼立体視ディスプレイと組み合わせ、 肝臓を立体的に認識できるHepatic Cockpitを開発した。 立体視することで肝臓の凹凸がわかりやすくなり、ヘッドト ラッキングによって様々な角度から肝臓を観察でき、より 実際の手術に近い状況での学習が可能となった。

■ 活動内容

肝変形シミュレーションソフト"Liversim"は、マウスを用い て肝臓の切離などを行うシミュレーションソフトである。本 プロジェクトでは"Liversim"と視点移動可能なメガネなし 立体視システムとを統合することで、実際の手術に近い三 次元動作を可能にしたシステム(図1)を開発した。

1. 手を使ったインタラクティブなシステム開発

左手で肝臓のゲルモデルを操作することでバーチャル な肝臓を動かすことが可能で同時に手に肝臓の復元力が 働く。右手に持つ超音波メスは、メス先端部分に取り付け たマーカー位置を光学式センサで測ることにより、実際の 手の動きに対応した三次元操作を可能にした。足元に設 置されたフットスイッチで超音波メスをアクティブにすると、 メスが振動し、バーチャルな肝臓を切離することができる。

2. 映像提示部

Hepatic Cockpit本体の上部に設置されたディスプレイ の立体映像を、ハーフミラーで反射させることで提示する (図2)。また、ハーフミラー越しに手の様子が透けて見え るため、あたかも手元で実際に肝臓を操作しているような 感覚が得られる。また、光学式頭部位置センサにより、頭 の位置を計測し、視点移動に応じた映像を提示する。更 に立体視により肝臓があるべき位置に見える(図3)。

図1 Hepatic Cockpit 外観

立体視ディスプレイ 光学式頭部位置センサ ーフミラー ディスプレイには反転した 映像を表示 ユーザはミラーで反射した 映像を見るため、通常の映

図2 映像提示部

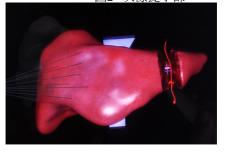


図3 ユーザ視点映像

代表発表者 問合せ先

上野 朝稔(うえの ともなり) 筑波大学システム情報工学研究科 〒305-8573 つくば市 天王台 1-1-1 筑波大学大学院システム情報工学研究科

バーチャルリアリティ研究室 TEL:029-853-5120

t_ueno@vrlab.esys.tsukuba.ac,jp

■キーワード: (1) Hepatic Cockpit

(2)裸眼立体視ディスプレイ (3)バーチャルリアリティ

■共同研究者: 矢野 博明 (筑波大学)

岩田 洋夫(筑波大学) 掛谷 英紀(筑波大学) 大城 幸雄 (筑波大学) 大河内 信弘 (筑波大学)