

新規な分離培養技術が紐解く未知微生物 : 硝化菌の生き様とは?

SATテクノロジー・ショーケース2020

■ はじめに

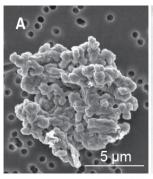
環境中には多種多様な微生物が棲息しているが、99% 以上の微生物が依然として培養されていない。ロベルトコ ッホやルイパスツールによって古典的な分離培養手法(平 板プレート, 限界希釈)が確立されて以来, 140年もの間, 分離培養手法の本質はまったく変わっていない。近年、メ タゲノム解析などを中心とした分子生物学的なアプローチ に基づいた技術開発は急速に進んでいるが, 分離培養 技術の開発は鈍化している。個々の微生物の特性、微生 物間相互作用、新規で有用な未知化合物を明らかにする ためには、微生物の獲得が必須である。発表者は、「微生 物の培養が難しいこと」「わずか1%にも満たない培養可能 な微生物によって、人類が大きな恩恵を受けていること」 に強い興味を抱いてきた。そこで本研究では、新しいコン セプトに基づいた微生物の分離培養技術を開発し, 新規 な微生物の獲得を目指した。また、これまで微生物の培養 が難しいと認識されてきた理由について考察した。

■ 研究内容

1. 着想

平板プレートでコロニー(数10-100細胞程度)を形成す る微生物種はごくわずかであることが知られている。限界 希釈によってスクリーニングされる微生物種も, 共存する 多種多様な微生物集団の存在比に依存する。固体培地 などのゲル化剤に依存することなく,液中や担体表面に 存在する微小なコロニー(マイクロコロニー)を検出・分取 できれば、 高効率に目的の微生物を獲得できるのではな いか、と考えた。

2. 実験方法


環境サンプル(活性汚泥、河川、海水、土壌など)を超 音波破砕機で穏やかに分散し、サンプルに含まれる不純 物を取り除き, 懸濁液を調製した。 懸濁液をセルソーター に供試し、前方散乱光と側方散乱光に基づいて、マイクロ コロニーの検出が可能な条件を探索した。96ウェルプレー トにマイクロコロニーを分注し、培養を行った。本研究では、 未培養な独立栄養性硝化菌(アンモニア酸化菌, 亜硝酸 酸化菌)を対象とするため、培地はアンモニア、亜硝酸を 含有した無機培地とし、暗室で静置培養した。

3. 結果

様々な環境サンプルから、系統学的に新規な硝化菌を 獲得することに成功した。獲得した個々の純菌株の性状 を明らかにしたところ、株によって、その特徴は大きく異な っていた。過去に「アンモニア酸化」「亜硝酸酸化」と特徴 づけされている微生物でも、様々な機能を持ち環境ストレ スや他者との競合から身を守るための生存戦略を担って いることが分かった。また、他の微生物との相互作用を介 し、生き長らえている株も存在した。私たちの想像を超え た,柔軟な生存戦略を持つ微生物は,実際の環境中で独 自の機能を発揮していると考えられる。一方で、私たちが 実験室で微生物を培養するために試行錯誤を重ねてきた 数多の最適培養条件は、ほんの一部の側面に過ぎないよ うである。したがって、個々の微生物を獲得することは、微 生物の本当の生き様を知る手がかりになる。

■論文

Hirotsugu Fujitani, Norisuke Ushiki, Satoshi Tsuneda, Yoshiteru Aoi, "Isolation of sublineage I Nitrospira by a novel cultivation strategy", Environ. Microbiol. 2014. 16(10): 3030-3040. (他, 数件)

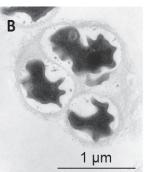


図 亜硝酸酸化細菌 Nitrospira

- (A)マイクロコロニーの概観(走査型電子顕微鏡)
- (B)マイクロコロニーの断面(透過型電子顕微鏡)

代表発表者

所

藤谷 拓嗣(ふじたに ひろつぐ) 国立研究開発法人 産業技術総合研究所 バイオメディカル研究部門

問合せ先

〒305-8566 茨城県つくば市東 1-1-1 つくば中央第6-第1本館316 TEL:029-861-6489

■キーワード: (1) 硝化 (2) 分離培養

(3) 微生物