

国際宇宙ステーション(ISS)「きぼう」日本実験棟 あなたも使ってみませんか?

地球·宇宙

SATテクノロジー・ショーケース2020

■ はじめに

国際宇宙ステーション (International Space Station: ISS) は日、米、欧、露、カナダの計15ヶ国 が協力し、地上から400km上空に建設した有人宇宙施設 で、1周約90分という速さで地球を周回している。「き ぼう」日本実験棟では、微小重力、高真空、放射線な ど宇宙ならではの特殊な環境下を生かし、長期実験や 研究が行われている。

JAXAでは、「きぼう」を取り巻く環境変化に対応し、 我が国の研究開発成果の最大化に向けて、戦略的かつ 組織的に「きぼう」利用を推進していくため、「きぼう 利用戦略」を策定した。(平成29年8月第2版制定)

当発表では、きぼう利用戦略に基づき、「きぼう」利 用が目指す2024年の姿及び、それに至る2020年までの 目標とその具体的な取組を紹介する。

■ 活動内容

1. タンパク質の構造に基づく薬剤設計支援

「きぼう」の微小重力環境は、地上よりも高品質な タンパク質結晶を生成することができる特長を有する。 JAXAは世界に誇る先鋭的な結晶生成技術を蓄積してお り標的タンパク質の結晶生成など成果を創出してきた。 JAXAは、過去の公的事業 (タンパク3000プロジェクト 他)で構築された国内の大学・研究所に分散している 技術基盤を集約し、創薬プロセス等に活用することを 目指した「創薬等支援技術基盤プラットフォーム事業」 が2012年度より実施されており、研究者の課題解決を 統合的に支援する体制が整っている。

2. 加齢研究による健康長寿社会形成への貢献 宇宙環境は、骨量減少、筋萎縮、免疫低下、バランス 感覚低下など、地上の高齢者や寝たきりの状態に類似 した生物影響の加速的な変化を提供できる環境である。 今後JAXAは、エピゲノム解析等により微小重力が生体 に与える影響を評価し、様々な臓器・器官において地

上の高齢者に見られる加齢様現象や疾患との類似性を 検証する。さらに、加齢様疾患等の対策法の検証や疾 患関連因子の同定などの研究を促進し、ヒトの加齢に 伴う生体変化の仕組みの解明や疾患対策等への貢献を 目指す。

3. 超小型衛星放出能力の強化

ISSからの超小型衛星の放出は、エアロックとロボッ トアームを併せ持つ「きぼう」からのみ実現可能な世 界で唯一のシステムである。「きぼう」から放出される 超小型衛星は、打上時の振動環境が緩和されるととも に、高頻度の輸送が可能であり、利用者にとって利便 性も高くまた、ロケットからの衛星放出のように主衛 星のスケジュールに依存せず、発案から打上げまで短 期間で実施可能である。

JAXAでは「きぼう利用戦略」に基づき、「きぼう」の 利用事業について、民間等による事業自立化(民間へ の開放)を目指しており、その第一弾として、平成30 年5月に超小型衛星放出事業の事業者を選定した。同年 5月末日時点において、「きぼう」から放出した超小型 衛星は200機以上となり、今後も世界的な市場拡大が見 込まれる。

4. 船外ポートを利用した戦略的利用推進

JAXAでは「小型・中型(200kg以下)の実験装置を船内 貨物として打上げ、「きぼう」のエアロックを介して船 外で利用・実験を可能とした」中型曝露実験アダプタ ー (i-SEEP) 開発し、運用している。

神崎 恵子(かんざき けいこ) 代表発表者 宇宙航空研究開発機構(JAXA)

きぼう利用センター

問合せ先 〒305-8505 茨城県つくば市千現 2-1-1

筑波宇宙センター

TEL:050-3362-3739

- ■キーワード: (1)国際宇宙ステーション (2)「きぼう」日本実験棟

 - (3)宇宙実験
 - (4)きぼう利用戦略
 - (5) 創薬
 - (6)加齢
 - (7)超小型衛星
 - (8)中型曝露実験アダプター