

物質·材料

機械学習を用いた多元 III-V 族化合物半導体の リチウムイオンニ次電池負極特性実証

SATテクノロジー・ショーケース2023

■ はじめに

リチウムイオン電池の性能向上に向け、炭素に代わる高容量負極材料の研究が活発化しているが、充電時の体積膨張による容量劣化が課題となってきた^{II}。そのような中、合金系負極はLiイオンと反応しない物質がバッファとして機能し、体積膨張が緩和されるため、負極材料として期待が高まっている^[2]。しかし、パラメータの多い多元合金材料では最適組成の探索が難しい。そこで本研究では、半導体工学の分野で長く研究されてきた多元系III-V族化合物半導体に着眼するとともに、複数パラメータの最適値の効率的探索が可能なベイズ最適化を用いることで、当該材料のリチウムイオン電池負極への応用可能性を調査した。

■ 活動内容 【実験手法】

Mo 箔上にIn_{1-x}Ga_xAs_{1-y}Sb_y(膜厚 500 nm, 堆積温度 400 °C)を分子線堆積法で堆積し、負極構造を作製した。 堆積したIn_{1-x}Ga_xAs_{1-y}Sb_yを金属Liと対向させ、電解液1M LiPF₆ in EC/DEC(1:1 v/v)を用いた二極式セルを作製し、 充放電試験を行った。そして、容量維持率が90%まで下が るサイクル数を目的パラメータとし、In, Ga, As, Sbのセル温 度に対してベイズ最適化を行い、最適条件を探索した。

【結果·考察】

1. 二元材料の負極特性実証

初めに二元材料の負極特性評価を行った。Fig. 1に GaSb, InAsの充放電特性を示す。GaSbは50サイクルまで 安定な傾向を示した一方、InAsは10サイクル以降に容量 の大きな減少が起きた。これは負極の体積膨張によるクラ ッキングに由来すると推察される。

2. ベイズ最適化を用いた四元材料の特性向上

続いてセル温度を変数として四元材料のベイズ最適化 をおこなった。Sbのセル温度に対して実験条件範囲内で 獲得関数をシミュレーションした時の分布および実際に得 られた実験値を示す(Fig. 2)。箱ひげ図は次の実験条件 および予測値を表す。これより、ベイズ最適化を用いた実 験条件の探索に成功したことが判る。ベイズ最適化を用い て得られたIn_{1-x}Ga_xAs_{1-y}Sb_yの負極特性をヒートマップとして Fig. 3に整理した。ヒートマップより、三元系では最大70サ イクルまで、四元系では最大110サイクルまで安定な負極 が合成されたことが判り、構成元素種が多いほどバッファ

- 代表発表者 野沢 公暉(のざわ こうき)
- 所 属 筑波大学大学院 数理物質科学研究群 応用理工学学位プログラム
- 問合せ先 〒305-0005 茨城県つくば市天王台 1-1-1 TEL:029-853-5472

効果が強く影響することが示唆される。

以上の結果から、機械学習を活用することにより、III-V 族化合物半導体の負極としての有用性を初実証した。AI 時代を迎える電気化学の新たな姿を提示する成果である。

■ 参考文献

J. Yang *et al.*, J. of the Electrochemical Society, **146**, 4009-4013 (1999).
W.-J. Zhang *et al.*, J. of Power Sources, **196**, 13-24 (2011).

Fig. 1. Galvano static charge/discharge cycles for (a) GaSb and (b) InAs at a current rate of 1 A g^{-1} .

Fig. 2. Experimental values and acquisition function on Knudsen cell temperature of Sb. The box plot indicates the next experimental condition. The red points are actual experimental data.

