

# 電圧駆動 MRAM の反転電圧における 形状磁気異方性の効果に関する シミュレーション研究



#### SATテクノロジー・ショーケース2025

## ■ はじめに

現在製品開発されているMRAM (Magnetoresistive Random Access Memory) は電流制御によって情報の書き 込みが行われるため,既存の揮発性メモリと比較して書き 込み電力が大きいという問題を抱えている。この問題を克 服するために、電圧制御で書き込みを行う電圧駆動 MRAM (Voltage-controlled MRAM) が研究されている。 VC-MRAMではパルス電圧印加によって記憶層の磁気異 方性を小さくすることで磁化を反転させ情報の書き込みを 行う。従来の研究では磁化反転が起こる有効磁気異方性 ゼロの条件は, 無限薄膜における結晶磁気異方性と形状 磁気異方性の釣り合いから求められ、反転電圧は素子サ イズに依存しないと仮定されてきた。しかし,素子の直径が 小さくなると形状磁気異方性のサイズ依存性が重要になる のではないかと考えられる。本研究ではマクロスピンシミュ レーションを用いて素子の直径(d)と異方性定数(K)の関 係を調べたのでその結果について報告する。

### ■ 活動内容

1. マクロスピンシミュレーション

想定した素子は、記憶層を円板形状とし、膜厚を 2nm 、 飽和磁化 $M_s$ を1 MA/m、ダンピング定数  $\alpha$  を0.01とし、外部 磁場 $H_{ext}$ 400 Oeを素子面内(y軸方向)に印加すると仮定し た[1]。また、素子面直(z軸方向)に異方性磁場 $Km_z/\mu_0M_s$ , および x, y, z方向に反磁場 $Km_z/\mu_0M_s$ , および x, y, z方向に反磁場 $Km_z, N_ym_y, N_zm_z$ )を考慮した。反磁場係数 $N_x$ ,  $N_y, N_z$ は素子サイズ(直径d)に依存する[2]。電圧を印加 していない場合はK = 2 MJ/m<sup>3</sup>とした。

以上の条件でマクロスピンシミュレーションを行った。電 圧が印加されたと想定してKの値を小さくして磁化ダイナミ クスの計算をし、磁化反転が起きる最大のK(K<sup>sim</sup><sub>max</sub>)を求め た。Kを求める一連の流れを素子の直径を変更して行い、 K<sup>sim</sup><sub>max</sub>のd依存性を調べた。

2. エネルギー保存による反転電圧の見積もり

d=40 nmで $K = K_{\text{max}}^{\text{sim}}$ におけるエネルギーの等高線図 と反転時の軌道を作成すると、Fig.1のようになった。磁化 反転する際には、 $m_z = 1$ である初期磁化方向地点から  $m_y = 1$ である鞍点を越える必要があり、それぞれの地点 におけるエネルギーを  $E_0$ ,  $E_1$ とすると、 $E_0 > E_1$ でなけれ ばならない。

 $E_0 = \frac{1}{2}\mu_0^2 M_s^2 N_z m_z^2 \qquad (1)$ 

$$E_1 = K - \mu_0 M_s H_{\text{ext}} + \frac{1}{2} \mu_0^2 M_s^2 \frac{N_z - 1}{2}$$
(2)

であるため、この二式を用いて反転するKの上限 $K_{max}$ を求めると、

$$K = \frac{1}{4}\mu_0 M_s^2 (3N_z - 1) + \mu_0 M_s H_{\text{ext}}$$
(3)

となる。この式より、Kmaxのd依存性について調べた。

#### 3. 結果

 $K_{\max}^{sim}$ および $K_{\max}$ のd依存性の計算結果をFig.2に示す。 素子の直径が小さくなるにつれてKの大きさは小さくなるこ とがわかった。また、二つの結果はよく一致したため、シミ ュレーションの結果は式(3)により精度良く求めることができ ることがわかった。

## ■ 参考文献

 R. Matsumoto, S. Yuasa, and H. Imamura, Phys. Rev. Appl. <u>18</u>, 054069 (2022).

2) M Beleggia, et al., J. Phys. D: Appl. Phys. 38, 3333-3342 (2005)



代表発表者 **宮崎 柊弥(みやざき しゅうや)** 所 属 **千葉工業大学 産総研 新原理コンピューティング研究センター** 問合せ先 **〒305-8568 茨城県つくば市梅園 1-1-1** 中央事業所 2 郡 TEL:029-861-5022

| ■キーワード: | (1) MRAM    |
|---------|-------------|
|         | (2)シミュレーション |
|         | (3)磁化ダイナミクス |
| ■共同研究者  | :荒井礼子, 産総研  |
|         | 今村裕志, 産総研   |
|         | 安川雪子,千葉工業大学 |