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INTRODUCTION VALIDATIONS & ADDED VALUES of BCCAQs
— Moist heatwaves increasingly threaten tropical low-lying regions such as Southeast Daily PR (mm) GCMs vs BCCAQs (1981—2014)
Asia, where high population density and vulnerability amplify impacts.  GCMs: [ ; ” T
— While extreme heat and humidity are well studied, compound moist BIS%CAQs-
heatwaves and their interactions with precipitation, especially very light rainfall
(drizzle), remain underexplored. RMSE S L
— Moreover, coarse-resolution GCMs are known to inadequately represent BCCAQs!
light-precipitation processes and exhibit systematic biases, limiting reliable S ~ T : Al
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assessments of compound moist heatwave dynamics. CORBFéCAQ
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We aim to address: Do drizzle and extreme precipitation differentially modulate Daily TASMAX (°C) GCMs vs BCCAQs (1981—2014) 1 .
compound moist heatwave characteristics, and can high-resolution downscaling - — —_— BEEEE B
better capture these processes across past and future climates? Bias 0.6
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Take-home message: Fine-scale downscaling is essential for capturing the GCMs- ol | W o
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Figure: Topography of the Greater Compound Moist Heatwa(VES and 'V)'U'tip'e-type Precipitation Does downscaling (BCCAQs) add value compared to parent GCMs ?
Mekong Subregion (orange dashed this poster . . . .. :
poundary). The Region of Interest (ROI) o via: frequency, duration and intensity With X being climate statistics, Added Value (AV) is recalled by Alessandro
spans 102°-110°E and 8°-16°N. -
Figure: Approaches Dosio et al. (2013a)
e Moist Heatwave (MHW) A heatwave is defined as a period of at least three consecutive Precipitation
days during which daily maximum air temperature exceeds its local 90" percentile of the == J . . . . . . . . . . . . . . .0-4 S
JJASO climatology (1981-2014). A MHW is further identified when relative humidity (RH) is A — A2 — A2 Maximum Air-Temperature 02 g
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eCompound Moist Heatwave—Precipitation (CMHWP) where A = | ng

+ A CMHWRP occurs when a MHW temporally overlaps with a precipitation-type event within X — X
a predefined window (7 days). Drizzle and Extreme precipitation are defined as daily OBS

precipitation below the 10" percentile and above the 90" percentile of the JJASO climatology
(1981-2014), respectively.

+ To avoid redundancy, each precipitation event is matched to the nearest MHW in time; when Compound Moist HW-Precipitation Events Projections
multiple matches occur, only the longest-duration drizzle or strongest extreme

precipitation event is retained. Compound events are treated as sequential processes, 100- CMHWP-Drizzle frequency (days/year) Sen’s slope (*p<0.01)
allowing precipitation to occur during or shortly after a MHW. 3 10!
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; 5 o p 20 00 ¢ CMHWP-Drizzle exhibits the most rapid increase under SSP585 (+6.1 days decade™"),

substantially exceeding both SSP126 and historical simulations, whereas observed records
indicate only marginal changes. In contrast, CMHWP—-Extreme events intensify primarily under

SSP585 (4+4.3 days decade™1), while remaining infrequent with negligible trends under SSP126

(%) OBS. Occurrence frequency different precip. types
around MHW 1981-2014

o Downscaling concepts (schematic illustration) B Ayt
e Under SSP585, enhanced warming markedly increases atmospheric moisture, favoring the
raw EC: Y- th3' eg GCM) downsc ,,,,,,,, i il 9 result occurrence of moderate but persistent moist (wet)-humid conditions over true extremes, which
12.0°N |74 /O T - 12.0°N | remain constrained by large-scale dynamical processes.
RS Downscale
11.0°N | via BCACQ  11.0°N [ e Future work will explicitly address and quantify the associated uncertainties.
10.OON) wwwwww on 2000-01-81 10.0°N H N Acknowledgement & References
| This research is supported by the Ministry of Education, Culture, Sports, Science and Technology, Japan, under the
105 0°E 106. 5oE "'"1'05 OOE1065OE """""" Japanese Government MEXT: Monbukagakusho Scholarship (Interdisciplinary Resilience Engineering Program
— — Powered by Project-Based Learning: 19011, 22016).
60 80 100 60 80 100 Cannon, A. J., Sobie, S. R., & Murdock, T. Q. (2015). Bias correction of GCM precipitation by quantile mapping: How well do methods preserve changes in quantiles and extremes? Journal of
Relative Humidity (%) Relative Humidity (%) Climate, 28, 6933-6950.

Werner, A. T., & Cannon, A. J. (2016). Hydrologic extremes — an intercomparison of multiple gridded statistical downscaling methods. Hydrology and Earth System Sciences, 20, 1483-1508.

Contact: hongnguyen.ngock2@gmail.com (Hong)



