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Figure 2: Spatial-temporal performance of NPP against
leading SPPs over the complex terrain of Vietham.
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ERAS-Land reanalysis data

a global land-surface by ECMWF
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e R: the influent radius; r,.: the
distance of the grid point to the
located station.
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Figure 1: Salient features of data fusion methods to produce
new precipitation products (NPP).
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