Time Series Classification

Using Recurrence Triangle Analysis

1. Introduction 3. Results

1. Background — The Real-World Challenge We evaluated the RT-based unsupervised classifier on both continuous chaotic systems (Rossler,

Time series from biomedical sensors and physical systems often exhibit complex nonlinear Lorenz) and discrete maps (Logistic, Henon). Gaussian noise was added to test robustness under

behavior. In many practical settings, labels are unavailable, and signals are short and realistic conditions. Our recurrence triangle-based method generates compact, interpretable

noisy—making reliable classification difficult. features that cleanly separate nonlinear dynamics without any labels.
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> Classifies time series without supervision

» Captures interpretable local micro-patterns

» Delivers high accuracy even with limited data

4. Discussion

To demonstrate interpretability, we quantified motif-level class differences in the Rossler dataset

2. Method — Recurrence Triangle-based Framework using effect-size analysis (Turner & Bernard, 2006). Several triangle types show large separations,

indicating they capture the microstructures driving dynamical differences between classes.

We convert each time series into a recurrence plot (RP) (Marwan et al., 2007) and analyze its . . . .
plot (RP) ( ) y To verify that these motifs reflect real system behavior, we reconstructed signals from RPs

local triangular motifs (Hirata, 2021). The workflow process can be described as follows: following Hirata et al. (2008).
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Step 5- Rank motifs by discriminative information
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6. Feature Construction for Each Time Series o6

The key insights are:
0. _ > The highly informative motifs are explicitly identifiable.

» Motif-class relationships are interpretable through effect sizes.
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Classification Feature 2 = PD of type (8 + 4) «

Feature 3 = PD of type (8 + 6)

7. Perform | {Feature 1 =PDof type (8+ 6+ 4)
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» Top motifs remain discriminative even under noise, which supports real-world use.
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» Although visualized here for the Rossler system, the same procedure generalizes to all

o
1

tested continuous and discrete systems.
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