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■ ははじじめめにに 
高い比容量を持つSiはグラファイトに代わる有望な二次

電池負極材料であり、全固体薄膜電池への応用も期待さ
れている[1]。しかし、充放電過程におけるSi薄膜の膨張収
縮に起因した特性劣化が課題となり、そのダメージ緩和に
向けたナノ構造化や複合材料化が盛んに研究されてきた
[2,3]。本研究では、新たにSi／基板界面に着眼し、金属基
板の種類がSi薄膜の負極特性に与える影響を調査した。 

 
■ 実実験験方方法法 
金属基板（Cu, Fe, Mo, Nb, Ni, Ta, Ti, W）上にSi（250 nm

厚）をスパッタ堆積した（Figs. 1(a), (b)）。二次電池負極特性
評価のため、金属基板上Si膜を金属Liと対向させ、電解液
に1 M LiPF6 in EC/DEC（1:1 v/v）を用いた二極式セルを作
製し（Fig. 1(c)）、充放電試験を行った。更に試料様態評価
のため、充放電後のセルを分解し、SEM、EDXにより試料
の表面様態を観察した。 
 
■ 実実験験結結果果・・考考察察 
初めに各試料の充放電特性を測定した（Figs. 2(a), (b)）。

グラフから、金属基板種によってプラトー電位に変化はな
く、SiとLiの充放電反応に対して基板は影響しないことが
判る。一方で、サイクル特性から、負極特性に対する基板
種依存性が確認された（Fig. 2(c)）。 
金属基板種によるSi負極特性変化の原因を考察するた

め、充放電前後のSi負極に対し、SEM・EDX像を取得した
（Fig. 3）。SEM・EDX像から、Si膜には充放電により亀裂が
生じており、微細な構造を形成している様子が確認された。
また、金属基板種によって充放電後のSi膜の表面様態に
差が生じていることが判る。 
ここで、負極特性や充放電後の負極表面様態が金属基

板に依存することから、Siと基板の密着強度が負極特性に
影響を与えると考えた。また、密着強度は材料間の電気陰
性度差に関係する。そこで、Si膜と金属基板の密着性をス
クラッチ試験により定量的に評価するとともにSiとの電気陰
性度差の関数として示した（Fig. 4）。グラフから、Siと金属
基板の電気陰性度差が大きいほどSiの臨界剥離荷重値、
及び100サイクル目の放電容量が高くなることが判る。 
本成果は、負極材料と金属基板の密着強度が負極特性

へ影響することを示す初めての報告であり、薄膜電池の特
性向上に寄与する成果である。 
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Fig. 1. Electrochemical performance of Si anodes: (a) Mo and (b) Ti 
sample at 1C, and (c) cycle dependence of discharge capacity. 
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Fig. 2. SEM and EDX images of the sample surface before and after 
10 cycles of charge-discharge at 1C. 
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Fig. 3. Critical peel load value and discharge capacity after 100th 

cycle vs. electronegativity difference with Si. 
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