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■■  ははじじめめにに  
近年，人工衛星や探査機，災害環境など過酷な条件下

で動作可能な高温メモリの需要が高まっている．しかし，従
来のシリコンベースの半導体は200 ℃以上の高温下にお
いて動作が不安定となる．  

ナノスケールの真空ギャップで隔てられた対向金属電
極（以下，ナノギャップ電極）の電子伝導は，トンネル伝導
であるため温度影響を受けず，高温動作メモリとして有望
である．白金電極を用いて600 ℃環境下で不揮発性メモリ
としての動作も確認された1)．このメモリ効果は白金電極の
他材料での検証は行われていない． 

 金（Au）とパラジウム（Pd）を混合することで融点が上昇
すると報告されており2)，高温でも安定な材料と報告されて
いる．本研究ではAuとPdを様々な混合比で混合したナノ
ギャップ電極を作製し，高温環境下でのスイッチングサイク
ルに伴う電気特性の変化について評価した．その結果，混
合材料も高温メモリ効果が発揮でき，様々な電極材料に応
用可能であることが分かった． 
 
■■ 活活動動内内容容 

図１にデバイスの概略図を示す．酸化層250 nmを備え
たシリコン基板に電子ビームリソグラフィー法と真空蒸着法
を用いて，Au:Pd＝3:7の混合比で厚さ10 nm，幅100 nm，
長さ400 nmのナノワイヤを作製した．その後，通電破断に
より約1 nmのナノギャップを形成した．真空圧力10⁻⁵ Pa以
下の真空容器内で，試料直下に配置したセラミックヒータ
ーにより温度を制御し，室温（RT)および600 ℃以上の高
温環境下における電気特性を測定した．図2に測定のシー
ケンス図を示す．電流制限をかけて低抵抗状態（LRS)へ切
り替えるSet，電流制限を設けず高抵抗状態（HRS)へ切り
替えるReset，各状態での抵抗値を測定するReadを各50回
ずつ行った．Set電圧は0－10 V，Reset電圧は0－8 V，
Read電圧は0.2 Vとした．さらに，Pd単体電極も同様に作製
し，特性の比較を行った． 

図1 デバイス概略図         図2  測定シーケンス図           
 

図 3 に 600  ℃ 環 境 下 の Reset 時 I-V 特 性 を 示 す ．
Au:Pd=3:7混合電極はReset動作が確認されたが，Pd単体
ではResetできないことが示された． 図4にAu:Pd=3:7混合
電極でのスイッチング特性を示す．安定したHRSとLRSの
切り替えが行われていることから，混合材料でも高温動作
可能であることが分かった． 
 

図3 600 ℃でのReset I-Vグラフ 
 

図4 Au:Pd=3:7電極 600 ℃でのスイッチング結果 
 
■■  今今後後のの展展望望 

今後は，走査型電子顕微鏡（SEM）や原子間力顕微鏡
（AFM）を用いてナノギャップ電極の構造変化を比較・解析
することで，混合比の異なる電極材料が高温動作に及ぼ
す影響を明らかにする． 
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■■  ははじじめめにに  
近年，チャンネルをゲートが全周から制御するGate All 

Around（GAA） FETをはじめとする，電子素子の微細化が
追究されており，新たなナノ材料を利用したさらなる微細
素子についても多くの研究がなされている． 
ナノ材料の一つにC60フラーレン（C60）がある．直径が約

1 nmの炭素原子が60個で構成される球体分子で，ユニー
クな電子特性を持つことが知られており，C60に官能基をつ
けたC60誘導体のC60 Pyrrolidine Tris Acid（CPTA）を用いた
薄膜の抵抗変化素子が報告されている[1-2]．しかし，フラー
レンは炭素原子の構成数によって形状が変わる材料であ
るが，そこに着目した研究は少ない．先行研究のフラーレ
ンを用いた抵抗変化素子においても，C60の特性しか明ら
かになっていない．そこで，炭素が70個で構成される楕円
体で直径が約1.2 nmのC70フラーレン（C70）に注目した．C70

とC60では，フロンティア軌道が異なることが報告されている
[3]．C70の方が，最高被占軌道と最低空軌道とのエネルギ
ー差が狭い．したがって，C60よりも電子移動が向上するこ
とが見込め，C70も抵抗変化素子として機能することが考え
られる． 
本研究ではC60及びC70フラーレンを用いた薄膜素子を

それぞれ作製し，構造差による抵抗変化効果の影響を検
証した．また，先行研究のCPTAと同じC70誘導体はない．
同一官能基を持つフラーレンで比較できるよう，C60誘導体
として図1（ａ）に示すPhenyl-C61-Butyric acid Methyl ester
（PC61BM），C70誘導体として図1（ｂ）に示すPhenyl-C71-
Butyric acid Methyl ester（PC71BM）を使用し，電気特性の
比較を行う． 

■■  活活動動内内容容  
1．フラーレン薄膜抵抗変化素子作製 
熱酸化層を備えたシリコン基板に原子層堆積法によりア

ルミナを2 nm成膜した.この基板を電子ビームリソグラフィ
法でパターン形成した．抵抗加熱蒸着を用いて，金とパラ

ジウムを8対2で混合し，幅25 nm長さ100 nmのナノワイヤー
形状を形成した．その後，エレクトロマイグレーション法を
用いて，ナノワイヤーの中央部に間隔20 nm程度のナノギ
ャップを形成した．その後，スピンコート法を用いて
PC61BMを塗布し，ナノギャップ間のPC61BMに電流を流す
ことでフラーレンチャネルを形成した．また，別の素子で
PC71BMを塗布したものも作製した．それぞれの素子を真
空チャンバー内で電気制御により，低抵抗状態 (LRS) と
高抵抗状態 (HRS)の抵抗スイッチを測定した． 
2．結果と考察 
図2（a）にC60のスイッチング結果を示す．LRS平均値が

185 kΩ，HRS平均値が1.99 GΩであった．異なる誘導体
においてもHRS/LRS比は10倍以上のスイッチングを維持
できることが明らかとなった．次に図2（b）にC70のスイッチン
グ結果を示す．LRS平均値が326 kΩ，HRS平均値が0.791 
GΩであった．C60と同じようにスイッチングしており，C70も
抵抗変化素子として機能している． 
また，HRSに遷移させるときの電流―電圧特性の傾きか

ら常用対数でとり．理論式から伝導解析を行う．空間電荷
制限電流（SCLC）に基づく伝導領域において異なる伝導
を示した． 
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図 2 スイッチング結果 
（a）PC61BM，（b）PC71BM 
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図 1 フラーレン誘導体の概略図 
（a）PC61BM，（b）PC71BM 
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